NOTATION

T, stress force tensor; M, moment stress tensor; u, displacement vector; w, rotation vector; X, ex-
ternal mass force vector; Y, external mass moment vector; p, density; I, tensor characterizing the inertial
properties of the medium during rotation; H, internal energy density; F, free energy density; S, internal en~
tropy density; K, kinetic energy; A, power of the external mechanical forces; Q, power of the external thermal
sources; ¢, thermal flux vector; w, heat liberation density; ®, absolute temperature; @, initial temperature;
E, unit tensor; aB, vector accompanying the tensor B; B’, symmetric part of the tensor B; B, antisymmetric
part of the tensor B;_f, Laplace transform in f,
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GJQPO‘I

EQUIVALENCE OF CERTAIN TYPES OF
RHEOLOGICAL EQUATIONS OF STATE FOR
POLYMER MEDIA

PART 1. GENERAL ANALYSIS

B. M., Khusid UDC 532,135

The conditions are established under which rheological relaxation equations and rheological in-
tegral equations will be equivalent,

According to the classification proposed by C. Truesdell and W. Noll [1, 21, the rheological equations of
state for aftereffect media fall into three groups: differential equations, relaxation (or strain rate) equations,
and integral equations. Equations of the differential type are applicable only to flow with a small Deborah num-
ber, i.e., to fluids with a relaxation time much shorter than the time scale of flow, In other cases one must use
either relaxation equations or integral equations of state. Many relaxation equations and integral equations of
state have already been proposed [4-7]. As a rule, they are partly based on microscopic models of polymer
fluids ‘and on certain assumptions regarding the motion of the medium. They also include several parameters
which must be evaluated empirically for any specific material, The rheological equations more or less agree
with experiments, According to the bibliography on this subject, however, none of them adequately describes
the rheological characteristics of various fluids in complex transient strain states. This makes it necessary to
try various models for a given material and then, after comparison with the experiment, select the most ap-
plicable ones. Such a diversity of rheological equations for fluids with memory impedes the programming of
numerical solution of hydrodynamic and thermal problems for rheologically complex fluids. In the case of re~
laxation equations of state one formulates the problems of hydrodynamics and heat transfer in the form of par-
tial differential equations, which can be solved by conventional methods of finite differences. For integral

Belorussian Polytechnic Institute, Minsk, Translated from Inzhenerno-TFizicheskii Zhurnal, Vol. 42, No,
4, pp. 670~-677, April, 1982, Original article submitted October 10, 1981,

470 0022-0841/82/4204-0470$07,50 © 1982 Plenum Publishing Corporation



equations of state these problems are formulated in terms of systems of integrodifferential equations. Here it
becomes necessary to integrate over trajectories of moving fluid particles, which makes it difficult to apply
conventional methods of finite differences. In view of this, there arises the question as to whether integral
equations of state can be reduced to equivalent systems of differential equations. A reduction of various rheo-
logical equations to a single type would also reveal the more distinct differences between the physical hypothe-
ses on the basis of which various rheological equations of state have been constructed for aftereffect media. In
this study will be considered this problem of reducing the integral rheological equations of state of the (1) kind
for an incompressible fluid to an equivalent system of differential equations not containing higher than first
derivatives of the stress tensor with respect to time

4

: T:Eﬁnﬁ, Tz = | palt, V19, 1 —Eldr. (1)

—c

Here summation is performed over different pairs (a, 8) and for different 3's, moreover, the sets of
corresponding functions g, can also differ. In this equation the isotropic additive tensor has been omitted, pq
is the relaxation function, and E is the unit tensor. Integration is performed over the trajectory of a moving
fluid particle. Most of the now available semiempirical integral equations of state for polymer melts and con-
centrates are put in the (1) form [4-7]., In analogy with the theory of relaxing lattice according to Lodge,
Yamamoto, et al. [8], one can interpret expression (1) as one describing the ''resultant'’ tension Typg on lat~
tices of kind $ with nodes of group «. Accordingly, the quantities u,(t, 7) are proportional to the number of @
nodes formed at instant of time 7 and still existing at instant of time t, while the symmetric tensors Qa(t, 1) —
E represent strain produced by flow of the fluid in a B-lattice at instant of time 7 relative to its state at in-~
stant of time t, with g(t, t) = E. We will now transform each term in sum (1) into a system of differential
equations. An evaluation of the substantive derivative with respect to time yields

i 14
_DTaB — Dy‘oc (t:_ﬂ Q. (t —FEi1d S . 1 DQB (tv T) d B
Dt j———Dt [Q(, 0§ —E] 'c+¥ bally W) — o dv. (2)

—oa

Equations (1) and (2) reduce to a system of first-order differential equations in time, if

DQB (t, T)

=— D ApO 2 ¢ 1)+ ¢ A E)], (3)
Dt >
_D.E“_M.:__ uv(t)u (t T). (4)

Expression (3) takes into account the symmetry of the Q g-tensor, superseript T denoting a transposition. In
accordance with the invariance of the rheological Eg. (1) (principle of objectivity) [1, 21, a change of the refer-
ence system (Q (t) representing an arbitrary orthogonal tensor) X — X* =Y (t) + Q(t) (X — 2Z) will transform
the tensor Qpg(t, T) into

Q (t, 1)~ (¢, 7) = Q) 1)Q (). (5)

Rewriting Eq. (3) in the new reference system, with the aid of relation (5), we obtain the transformation law
for the tensor A,By(éﬁy is the Kronecker delta, 33y = 0 for$ = y and 0By = 1 for B=1y)

® T D T
Aoy Ay = QAL Q" + L0 (6)

With the aid of the transformation law for the vorticity tensor W = 1/2 (v v=vyh)[y, 21, namely W — W* =
QWQT + DQ/Dt QT, it is possible to represent the tensor Aﬁy in the form
Agy = 8,,W =By, By, —Bgy = QB Q" (7)

where the tensor Bﬁy satisfies the principle of objectivity (6). Since the coefficients in system (4) are not

functions of 7, one can express the function py (t, 7) as pg (L, 7) = £ Fay(t, T) Py(7) with Foy denoting the

fundamental solution to system (4) which satisfies the condition Foy (T T) = Oyvy. Inserting expressions (3),
t

(4), and (7) into Eq. (2), and introducing the function Pa = 5 B (, T)dv, we arrive at the system of first-
order differential equations in time which is equivalent to E—q'=° (1)

Dp,,
Dt

‘f‘Z”avpv': — Qs (8)
v
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0 ,
Top + 2 KayTyp + Z (B:’BTOL‘V + ToyBys) = pa 2 (Bfgv + Bgy).
v v . »

Here the notation of the Jaumamn derivatice has been used
9 DTy
DT

af =

— WTgg + TyW.

All quantities in Eqgs, (8) are to be evaluated at a given point at instant of time t. These equations consti~
tute, of course, a special case of the general form of relaxation equations for fluids which satisfy the principle
of objectivity [1]. For most rheological models found in the bibliography on this subject [4-7],

Hoy = %o 0oy, App = Aglys 9)

in Egs. (3) and (4). According to the interpretation based on the theory of lattice relaxation, the first of rela-
tions (9) means that the probability of breakup of group « nodes is proportional to the number of such nodes.

4
In this case g, (t, 7) = @a(v)exp[—] %« (8)dE] , where w,, defines the probability of breakup of one node. With the

second of relations (9) taken into account, Eq. (3) becomes
Dgﬁ (t, T) -
Dt

i
It follows from Eq. (10) (tr denotes the trace of a tensor) that det Qg(t, 7) = exp [*f tr (A + Ap) dE] . Since the

—AF() R, ) — R (¢, DA, |, = E. (10)

T
eigenvalues of the symmetric tensor Qp (t, 7) at t =7 are equal to unity and since, det Qp(t, 7) > 0, these
eigenvalues are always positive and there exists a positive-definite tensor v 2p(t, 7) [9]. This permits us to
use the representation :

Q; = ogay, (11)
where wg = Rﬁ\/ {2, and Rﬁ is some orthogonal tensor. Inserting the representation (11) into Eq. (10) yields
Doy (1, 7)
__BD—t_— =-— g (t, T) Aﬁ (t), mBIi:T =E. (12)

Equations (10) and (12), which have been derived from expression (1), determine the tensors wg and £8 only
at t = 7. We will now establish several properties of the tensor wg(t, 7). We assume a giver mode of deforma-
tion of an Ag(t) lattice. Let us consider an instant of time 7 = &, Since wz,i('r, £) wa(t, £)|t=7 = E, hence the
linearity of relation (12) makes

o5 (T, Beglt, =0, 1), t>T>E (13)
Differentiating this equations with respect to 7 and using relation (12), we obtain

D(!)B (t N T)
Dt

We next define the tensor wpg(t, 7) at t=7 by the equality

= AB (T) op (t, T), o)ﬁlrzt =EFE. (14)

o(t, ) =0p ' (1, 1), T>1. (15)

Differentiating expression (15) with respect to 7, with relation (12) taken into account, we again arrive at Eq.
(14). Therefore, Eq. (14) defines the tensor wp(t, 7) at all instants t and 7. Since wg (t, T) w[-gl(t, t) |~,—=t0 =FE
at any t,, hence the linearity of expression (14) makes

op (4, T) = og(ly, T)0s(t, 1,). (16)

This expression extends relation (13) to three arbitrary instants of time. Tensor wg(t, 7) is the matricant [9]
of Eq. (14) and relation (16) describes its basic properties, According to relation (16), the distortions of a
lattice at instant of time T relative to its state at instant of time t do not depend on the intermediate state at
instant of time t; Property (16) fully defines the tensor wg(t, 7). Starting with it, one can easily derive rela-
tion (15) and then Eqgs. (12), (14), (10). Thus the second of relations (9) is equivalent to an assumption that the
relative deformation of a lattice has the multiplicative property (16). On the basis of Eq. (14), it is easy to
demonstrate that changing the reference system will transform the tensor wpg(t, 7) as follows: wp(t, 7) —
wg‘(t, 7) = Q(T)wg(t, T)QT (t). In another study (10) the tensor wg(t, T) satisfying Eq. (14) and the tensor

25(t, 7) defined by relation (11) are called nonholonomic or generalized deformations, Relations (9) greatly
simplify the rheological equations (8) and reduce them to the form of a Maxwell fluid
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: r . (17")
Top + % Tap + Bg Top =+ TepBp = pq (BB + Bﬁ),
Dp, ‘
_D’; + RaPo, = — Po- (17m)
Such are the differential equations to which all integral rheological equations of the form
4 1
T=3 [ea@exp|— [ ®dE] 05t Dos(t, ) —El (18)

%,B— T

with the tensor wg(t, 7) satisfying the property (16) can be reduced. The quantities ¢ o, ny depend on the de-
formation mode at a given point at instant of time t. Some rheological models found in the bibliography on this
subject correspond to the integral equation

T=—z§ f‘ia(f)exp[~fm.(ﬁ)d&]ggf%m, (19)

which is obtained through integration of Eq. (18) by parts. Functions ¢, and ¢, are related through the equa-

D - ~
tion —l%“—macpacha . Inserting this relation into Eq. (17"") yields p, = —¢,. A feature distinguishing model (18)

from model (19) is that the quantity p, appearing as the shear modulus in Eq., (17') can be determined from
Eq. (17'') and depends on deformation history. In model (19), on the other hand, the quantity py depends only
on the flow characteristics at instant of time t. When %y, @ 5a are constants, then this difference between
the two models (18), (19) vanishes and they become fully equivalent, Rheological equations of the one (18) kind
are generalizations of earlier Lodge, Ward, Jenkins models and rheological equations of the (19) kind are
generalizations of earlier Oldroyd, Friedrichson, Walters models [4-7]. In order for Egs. (17') and (17'"} to
merge into the single relation (18), it is necessary that the initial conditions for them be stipulated in the qui-
escent state, i,e,, at t— < (the problem of initial conditions for relaxation equations has been treated more
thoroughly in [31). The tensor Bg in Eqgs. (17') and (17'') has been defined ambiguously. A transformation
Baf‘* EB = BB - bﬁE—“ RB (TttB'_ paE)’ Po—> Po = Po — gaﬁi Hg, — ’;a. = % -+ Qb[iy Tocﬁ_" fa[& = Toa[i - guBE where

—DDg—;‘BwL ;‘agaﬁzzbﬁpa and Rg is an arbitrary antisymmetric tensor, does not have the form of Eqgs. (17') and
(17'7). Since the stress tensor has been defined precisely, except for the isotropic tensor, this transformation
will not alter the rheological equation, In order for the integral equation (1) to be reducible to the system
(17), (17'") with a symmetric tensor Bg, the tensor Ry must satisfy the equation Bg — BT = (Tap— PaE) Rg+
Rp(Typ —poE). In a system of coordinates formed bythe eigenvectors of the tensor Tyg we have Rgij =

(Bgij — Bgij )/(Taﬁj + TaBj — 2py). This expression must be definite for any deformation mode and, specif-
ically, when Tggi + Togj = 2py. We will determine the condition under which the general relaxation~type
equation

0
T+ »T+ Y = ¢E, (20)

with the symmetric tensor Y, dependingon the flow mode at a given point at instant of time t, becomes trans-
formed into the system of Eqs. (17') and (17'') with a symmetric tensor B, Inserting T = T —pE into Eq. (20)
yields

0
Toafayv=0 2P 4,pe o 21)
Di p (

System (21) corresponds to the form (17'), (17'") if there is a tensor B which satisfies the equation Y = BT +
TB. In a system of coordinates formed by the eigenvectors of the tensor T we have Bij = Yij/ (Ti + Tj). This
relation must be definite for any deformation mode and, specifically, when Tj + Tj = 0,

Therefore, not every integral equation (1) and relaxation equation (20) ig reducible to the system (17'),
(17'') with a symmetric tensor BB' Let us examine closer the meaning of symmetric tensors By. From repre-
sentation (11) and Eq. (14) we have

DQ,
Dt
It is evident here that Qg = E and, consequently, no stresses appear when Bg = 0. When Bg =D, where D =

Y, (Vv + Vv 1) is the strain rate tensor of the medium, then Ag= VV and Eq. (14) yields w = Ft(7) as the
relative strain gradient in the medium { 1-3]. These properties as well as the transformation law for tensor

= o (W 4 By) 05 + o3 (— W + Bg) 0y = 203Bgop. (22)
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wpg make it possible, upon a change of the reference system, to interpret tensor B g as the strain rate tensor
of a g-lattice, The quantities wy, 95, Bgin Egs. (17') and (17'') depend on the flow characteristics at instant
of time t, namely on tensors D and T, B internal parameters characterizing the medium, higher than first-
order strain rate tensors (Rivlin—Ericksen, White—Metzner, Goddard [3, 10]), etc. Since Egs. (17') and (17'")
satisfy the principle of objectivity, these functions are isotropic [ 1, 2], Using the formulas for representing
isotropic scalar and vector functions of symmetric tensors [11, 121, one can write the expressions for »,, ¥,
B p in a more explicit form. In the simplest case of these quantities depending only on the two tensors D and
Typ[2, 31, for instance,

By = m,D 4 myT 5 + msD? + mTop -+ m5 (DTop + TogD) + mg (D2Tap + TogD?) + my (DTag + TagD) + mg (D¥Tag + TagD?). 23)

The isotropic term has been omitted in expression (23). Functions g, ¢y and also mj (i = 1-8) depend on in-
ternal parameters and on nine invariants of tensors D and Tpp (inasmuch as trD = 0): tr D%, trD3, tr TaB’

tr Tgw, tr ngﬁ’ tr (TypD), tr(TypD?), tr (DT(ZIB), tr (D2T3Mﬁ)‘ The isotropic tensor function BsTog + TegBg

in Eq. (17') can also be expressed in a form analogous to expression (23), Such a transformation is effected
through sequential elimination of tensors sz s TapDToB, TaﬁDzTa g with the air of the Hamilton— Cayley theorem
and the consequent identity for symmetric tensors

TATs(TA—f—AT)trT——TZAfATZ———;A(trzT—trTZ)—}-TZtrA—f—

4+ T{HrTA—tr TirA)+ E[trTzA'—— trTir TA 4+ %(trZT—trTz) trA].
For calculating the characteristics of a slow flow one can use differential rheological equations, For the
generalized Maxwell fluid (17'), (17'') these equations are obtained by insertion of the strain tensor expansion
B S Ve (v —18)" _ Drg
QﬁJE_f—E at o V= Dz

=t =t

into integral Eqgs. (18) and (19), respectively:

¢

T= E i qanv[ﬂm Gon = .S{ Pe “(‘L_;;TE)H—‘ eXp (—“ [ V,udE) dx,

"af n=1 — : T

o t n 4

ey = ~ - T—1 . .

T= E Eqa,n—lvﬁn, Jon = — j Do -(——1—)—-exp (—— g xad‘g) dr.
aff n=l —a0 ni- T

As t ——=, we find that ¢, = ¢, as 50, - gNDO,a, Mo o,q With subscript 0 denoting the values of these quan-

tities in the undeformed state and qy,n ~ (= 1)" ¢y 4/ %é‘f&, don — (—1D)* Py 0/ % y. When functions @g, P

%y depend on the deformation mode, then the quantities qgn, dg,n can be conveniently expressed in the form

! ’

g = 3 D D g D ()

R (n— k) - R (n— )
with the functions determined from the equations
D] Df, = -
‘—%?k_' + %afar = _(Path’ » _’Dﬁf—k' + %ofar = cPoath-

Using the multiplicativity relation (16), one can rewrite the expression for tensor Vgn in the form (t, is
an arbitrary instant of time)

Vﬂn (t) = (’JE (ta tO)

D Qgu(ty, t
—i%)—mﬁ(t, to).

Y

Differentiating this expression with respect to t, we obtain the recurrence relation
DV,
Vengr = —5?‘ -+ AgVp, + Vg,Ag, Veo=E,

analogous to the recurrence relations for Rivlin—Ericksen and White—Metzner tensors [3]. Specifically we
have Vg; = 2Bg. When the tensor Bg depends on the stress tensor, then the derivative DVgn /Dt must be cal-
culated by elimination of the derivatives of the stress tensor with the aid of Eq. (17').

The preceding mathematical analysis thus reveals that most rheological equations for flowing polymer
media can be derived from the equations of a Maxwell fluid, namely by introduction of the dependence of quan-
tities wy, @o on the flow characteristics and by use of more intricate ''effective’" strain rate tensors Bg in
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Egs. (17') and (17'"). Into account is also taken here that the tensors Bg can depend on the flow characteris-
tics.
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INTERRELATIONSHIP OF RHEOLOGICAL AND
BIOLOGICAL CHARACTERISTICS IN COMPLEX
SYSTEMS

E. G. Tutova, E. V. Ivashkevich, UDC 532.535
and I. V. Zhavnerko

The interrelationship of rheological properties and quantitative indices of fluids of biological
origin is analyzed. Possible variants of the use of the viscosity for estimating the state of the
system are presented.

In studying labile systems, whose properties depend greatly on the parameters of the external medium
(t, P, ¢) or the state of the system itself (t, W), it is necessary to choose a characteristic physical indicator,
which reflects to a certain extent the state of the substance, as well as the kinetics and dynamics of its varia~
tion, Typical representatives of such materials are heterogeneous systems of biological origin — microbe bio-
masses, It is well known that the presently existing methods of microbiological analysis are imperfect and are
distinguished by their long duration, measured in days, and high degree of error., The effect of the error can
be eliminated by multiple repetition of the experiment and statistical analysis of the results obtained, as is
customary in studying probabilistic processes. However, inthis case, the duration of the analysis increases even
more, which can be eliminated only by developing and applying new improved methods, based on the interrela-
tionship of physical and biological properties of the system,

It is well known that microbiological materials of different nature are characterized by a wide range of
rheological properties from Newtonian to plastic {1], which can serve as qualitative and quantitative indices of
heat and mass transfer in bioengineering and biotechnology processes, Thus, the viscosity of the starting feed
media exceeds by not more than a factor of 1,5-2 the viscosity of water, while during the growth of life of micro-
organisms, this quantity increases by one to two orders of magnitude, The increase in the viscosity of the
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