
N O T A T I O N  

T, s t r e s s  force  tensor;  M, moment  s t r e s s  tensor;  u, d i sp lacement  vector ;  w, rotat ion vector ;  X, ex-  
t e rna l  m a s s  force  vector;  Y, ex terna l  m a s s  moment  vector;  p, density; I, t ensor  cha rac te r i z ing  the ine r t i a l  
p rope r t i e s  of the medium during rotation; H, in ternal  energy  density; F, f ree  energy density; S, in ternal  en-  
t ropy density; K, kinetic energy; A, power  of the ex t e rna lmechan ica l  forces ;  Q, power  of the externa l  t h e rma l  
sources ;  q, the rmal  flux vector ;  w, heat  l iberat ion density; | absolute  t empera tu re ;  | initial  t empera tu re ;  
E, unit t ensor ;  a B, vec tor  accompanying the t ensor  B; B +, s y m m e t r i c  pa r t  of the t ensor  B; B-, a n t i s y m m e t r i c  
p a r t o f t h e ( e n s o r  B;T, Laplace t r a n s f o r m  in f. 
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EQUIVALENCE OF CERTAIN TYPES OF 

RHEOLOGICAL EQUATIONS OF STATE FOR 

POLYMER MEDIA 

PART I. GENERAL ANALYSIS 

B. M. Khusid UDC 532.135 

The conditions a r e  es tab l i shed  under  which rheological  re laxat ion  equations and rheologieal  in-  
tegra l  equations will be equivalent.  

According to the c lass i f i ca t ion  p roposed  by C. Truesde l l  and W. Nell [ 1, 2], the theologica l  equations of 
s ta te  for  a f te re f fec t  media  fall  into th ree  groups:  different ial  equations,  re laxat ion (or s t r a in  ra te )  equations,  
and in tegra l  equations. Equations of the different ial  type a r e  appl icable  only to flow with a smal l  Deborah  num-  
ber ,  i .e . ,  to fluids with a re laxa t ion  t ime  much s h o r t e r  than the t ime  sca le  of flow. In o ther  c a se s  one mus t  use  
e i ther  re laxat ion  equations or  in tegra l  equations of s tate.  Many re laxat ion  equations and in tegra l  equations of 
s ta te  have a l ready  been proposed  [4-7] .  As a rule,  they a r e  pa r t ly  based  on mic roscop ic  models  of p o l y m e r  
fluids and  on cer ta in  assumpt ions  regard ing  the motion of the medium.  They also include s eve ra l  p a r a m e t e r s  
which mus t  be evaluated empi r i ca l ly  for  any specif ic  ma te r i a l .  The theological  equations m o r e  or  l e s s  a g r e e  
with exper iments .  According to the bibl iography on this subject ,  however,  none of them adequately d e s c r i b e s  
the rheological  c h a r a c t e r i s t i c s  of var ious  fluids in complex t rans ien t  s t r a in  s ta tes .  This  makes  i t  n e c e s s a r y  to 
t ry  var ious  models  for  a given m a t e r i a l  and then, a f t e r  compar i son  with the exper iment ,  se lec t  the m o s t  ap-  
pl icable  ones. Such a d ive rs i ty  of rheological  equations for  fluids with m e m o r y  impedes  the p r o g r a m m i n g  of 
numer ica l  solution of hydrodynamic  and the rma l  p rob l ems  for  theologica l ly  complex fluids. In the ca se  of r e -  
laxat ion equations of s ta te  one fo rmula te s  the p rob l ems  of hydrodynamics  and heat  t r a n s f e r  in the f o r m  of p a r -  
tial di f ferent ia l  equations, which can be solved by conventional methods of finite d i f ferences .  F o r  in tegra l  
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equations of s ta te  these  p rob l ems  a r e  fo rmula ted  in t e r m s  of s y s t e m s  of in tegrodi f ferent ia l  equations. Here  it 
b ecomes  n e c e s s a r y  to in tegra te  ove r  t r a j e c t o r i e s  of moving fluid pa r t i c l e s ,  which makes  it  difficult  to apply 
conventional methods of finite d i f fe rences .  In view of this,  the re  a r i s e s  the quest ion as to whether  in tegra l  
equations of s ta te  can be reduced to equivalent  s y s t e m s  of di f ferent ia l  equations. A reduction of var ious  t h e o -  
logical  equations to a single type would also r evea l  the m o r e  dis t inct  d i f fe rences  between the physica l  hypothe-  
ses  on the bas i s  of which var ious  rheological  equations of s ta te  have been cons t ruc ted  for  a f te re f fec t  media.  In 
this study will be  cons idered  this p rob lem of reducing the in tegra l  rheologica l  equations of s ta te  of the (1) kind 
for  an i n c o m p r e s s i b l e  fluid to an equivalent  s y s t e m  of different ia l  equations not containing higher  than f i r s t  
de r iva t ives  of the s t r e s s  t ensor  with r e s p e c t  to t ime  

t 

" T : ~ T c r  T ~ =  j'~t~(t, z)[f~(t, "r (1) 

He re  summat ion  is  p e r f o r m e d  over  di f ferent  pa i r s  (~ ,  ~) and for  di f ferent  f i ' s ,  m o r e o v e r ,  the se ts  of 
cor responding  functions ~(~ can also differ .  In this equation the i so t rop ie  additive t ensor  has been omitted,  ~ 
is the re laxa t ion  function, and E is the unit t ensor .  In tegra t ion is p e r f o r m e d  over  the t r a j ec to ry  of a moving 
fluid pa r t i c l e .  Most of the now avai lable  s e m i e m p i r i c a l  in tegra l  equations of s ta te  for  po lymer  mel t s  and con-  
cen t r a t e s  a r e  put in the (1) fo rm [4-7] .  In analogy with the theory  of re laxing la t t ice  according  to Lodge, 
Yamamoto ,  et al. [8],  one can i n t e r p r e t  express ion  (1) as one descr ib ing  the " r e s u l t a n t "  tension T a f  t on l a t -  
t ices  of  kind ~ with nodes of group c~. Accordingly,  the quanti t ies ~a ( t ,  ~) a r e  propor t iona l  to the number  of 
nodes fo rmed  at  ins tant  of t ime  ~ and st i l l  exist ing at  ins tant  of t ime t, while the s y m m e t r i c  t enso r s  ~fi (% 7) - 
E r e p r e s e n t  s t r a i n  produced by flow of the fluid in a /3-lattice at  instant  of t ime  T re la t ive  to i ts  s ta te  at in-  
s tant  of  t ime  t, with ~ fi(t, t) = E. We wiI1 now t r a n s f o r m  each t e r m  in sum (1) into a s y s t e m  of different ia l  
equations.  An evaluation of the substant ive  der iva t ive  with r e s p e c t  to t ime  yields 

t t 

- D t  Dl [f~(t, ~ ) - - E l d ~ +  ~t~(t, ,~) D~B(t'Dt "~) d~. (2) 

Equations (1) and (2) reduce  to a s y s t e m  of f i r s t - o r d e r  di f ferent ia l  equations in t ime,  if  

DP.~(t, ~) "~[A;~(t) f~v(t, ~ ) +  f~,(t, T)A,~(t)I, (3) 
Dt 

D ~  (t, ~) 
Dt = -  X • ~)' (4) 

? 

E x p r e s s i o n  (3) takes  into account  the s y m m e t r y  of the ~2 f i - t ensor ,  s u p e r s c r i p t  T denoting a t ransposi t ion.  In 
acco rdance  with the invar iance  of the rheological  Eq. (1) (pr inciple  of object ivi ty)  [1, 2], a change of the r e f e r -  
ence s y s t e m  (Q ( t )  r ep re sen t ing  an a r b i t r a r y  orthogonal  tensor)  X ~ X *  = Y(t)  + Q (t) (X - Z) will t r a n s f o r m  
the t en so r  ~2fi(t, T) into 

~B (t, ~) -~ ~ if, ~) = Q (t) ~ (t, ~) O~ (0  (5) 

Rewri t ing Eq. (3) in the new r e f e r e n c e  sys t em,  with the aid of re la t ion  (5), we obtain the t r ans fo rma t ion  law 
for  the t en so r  AfiT (5fi7 is the Kroneeke r  delta,  5fit  = 0 forf i  ~ ~ and 5fi~/ = 1 for  fi = y )  

�9 ~ DQ O~ A ~ - - + A ~  == QA~Q + ~ . ( 6 )  

With the aid of the t r a n s f o r m a t i o n  law for  the vor t i c i ty  t ensor  W = ~/2 ( V ~ ' -  V v  - 'T) [1, 2], namely  W ~ W* = 
Q W Q  T + DQ/Dt QT, i t  is poss ib le  to r e p r e s e n t  the t ensor  Afl~ in the f o r m  

�9 B v A ~  = 8 ~ W  + B ~ ,  B ~  ~ B ~  : Q ~vQ, (7 )  

where  the t en so r  Bfi 7 sa t i s f i e s  the pr inc ip le  of object ivi ty  (6). Since the coeff icients  in s y s t e m  (4) a r e  not 
functions of T, one can exp res s  the function ~ (t, T) as ~c~ (t, ~) = Z F~v(t ,  ~)g0~,(~) with F ~ ,  denoting the 

y 1 / ~ l  

fundamental  solution to s y s t e m  (4) which sa t i s f i es  the condition Ec~ T (% r) = fisT- Inser t ing  express ions  (3), 

(4),  and (7) into Eq. (2), and introducing the function p ~  = ~ ~ ( t ,  z ) d , ,  we a r r i v e  at  the s y s t e m  of f i r s t -  

o r d e r  d i f ferent ia l  equations in t ime  which is equivalent  to Eq. (1) 

Dp~ + X uc,~p~, = - - ~ ,  (8) 
Dt 
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eigenvalues of the s y m m e t r i c  t ensor  ~2fl (t, T) at  
eigenvalues a re  always posi t ive  and there  exis ts  
use  the r ep resen ta t ion  

? ? 1' 

Here  the notation of the Jaumann der iva t ice  has been used 

o D T ~  
T ~  WT~ + T~W. 

DI" 

All quanti t ies in Eqs.  (8) a r e  to be evaluated at a given point at instant  of t ime t. These  equations cons t i -  
tute, of course ,  a specia l  case  of the genera l  f o r m  of re laxat ion  equations for  fluids which sa t i s fy  the pr inc ip le  
of objectivi ty [ 1]. For  m o s t  rheologieal  models  found in the bibl iography on this subjec t  [4-7], 

•  = • A~ : A ~  (9) 

in Eqs. (3) and (4). According to the in te rpre ta t ion  based  on the theory  of la t t ice  re laxat ion,  the f i r s t  of r e l a -  
tions (9) means  that the probabi l i ty  of breakup of group a n o d e s  is p ropor t iona l  to the number  of such nodes. 

t 

In this ease  #a  (t, r) = ~a(~)e• , where ~ defines the probabi l i ty  of breakup of one node. With the 

second of re la t ions  (9) taken into account, Eq. (3) becomes  

Dft B (t, ~) 
Dt - (10) 

t 

It follows f rom Eq. (10) (tr  denotes the t r ace  of a tensor)  that det ~2fl(t, r )  = exp [ - -  f t r  (A~ + A~)d~]. Since the 
T 

t = r a r e  equal to unity and since,  det ~fl(t, T) > 0, these  
a pos i t ive-def in i te  t ensor  ~=~fi(t, r)  [9]. This p e r m i t s  us to 

T ft~ = toi3{%, ( 11 ) 

where co O = t t f i ~ ,  and ttfi is some orthogonal tensor .  Inser t ing the r ep re sen ta t i on  (11) into Eq. (10) yields  

D~oi (t, ~) 
- -  c%(t, ~)A~(t), {o~[t=T-----E. (12) 

Dt 
Equations (10) and (12), which have been der ived f r o m  express ion  (1), de te rmine  the t ensors  ~ f  and ~ffl only 
at t _> r .  We will now establ ish  s eve ra l  p rope r t i e s  of the t ensor  ~fi( t ,  r ) .  We a s s u m e  a given mode of d e f o r m a -  
tion of an A~}(t) lat t ice.  Let  us cons ider  an instant  of t ime  r _> 4. Since ~ t ( r ,  4) {aft(t, ~ ) I t=  r = E, hence the 
l inear i ty  of re la t ion  (12) makes  

- - I  {o~ (% ~)r ~) ---- {% (t, "0, t ~ T ~ .  (13) 

Differentiat ing this equations with r e s p e c t  to r and using re la t ion  (12), we obtain 

De% (t, ~) 
D~ -- A8 (~) c% (t, ~), co~l,= t = E. (14) 

We next define the tensor  wfl(t, r)  at  t -~ r by the equality 

c% (t, ~) = {o7~ (T, t), �9 ~ t. (15)  

Differentiat ing express ion  (15) with r e s pec t  to r ,  with re la t ion  (12) taken into account, we again a r r i v e  at Eq. 
(14). There fore ,  Eq. (14) defines the t ensor  ~o/j(t, r) at all  instants  t and r .  Since ~ofi (t, r)  w ; l ( t ,  to) It=t0 = E 
at any to, hence the l inear i ty  of express ion  (14) makes  

o}~(t, "~)- o}~(t0, T){%(t, to). (16) 

This express ion  extends re la t ion (13) to three  a r b i t r a r y  instants  of t ime.  Tenso r  tot(t,  r)  is  the m a t r i c a n t  [9] 
of Eq. (14) and re la t ion (16) desc r ibes  i ts  bas ic  p rope r t i e s .  According to re la t ion  (16), the d is tor t ions  of a 
la t t ice  a t  instant  of t ime  r r e la t ive  to its s ta te  at  instant  of t ime  t do not depend on the in te rmedia te  s ta te  at  
instant  of t ime t 0. P rope r t y  (16) fully defines the t ensor  wf(t ,  r ) .  Start ing with it, one can eas i ly  der ive  r e l a -  
tion (15) and then Eqs. (12), (14), (10). Thus the second of re la t ions  (9) is equivalent  to an assumpt ion  that the 
re la t ive  deformat ion  of a la t t ice  has the mult ipl icat ive p rope r ty  (16). On the bas i s  of Eq. (14), i t  is easy  to 
demons t r a t e  that changing the r e f e r e n c e  s y s t e m  will t r a n s f o r m  the tensor  wp( t, r) as  follows: w/j(t, r) 
oj ; ( t ,  r) = Q(r)wfi ( t ,  T)Q T (t). In another  study (10) the t ensor  ~ f ( t ,  r) sa t is fying Eq. (14) and the t ensor  
~ f ( t ,  T) defined by re la t ion  (11) a r e  called nonholonomic or  genera l ized  deformat ions .  Relat ions (9) g rea t ly  
s impl i fy  the theologica l  equations (8) and reduce  them to the f o r m  of a Maxwell fluid 
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0 

Ta~ + • + B~ Ta~ + Ta~Bt~ = p= (B~ + B~), 

Dp,~ 
+ • = - -  ~ .  

Dt 

Such a r e  the di f ferent ia l  equations to which all in tegra l  rheologieal  equations of the fo rm 

( I7 ' )  

( 1T ' )  

t t 

(18) 

with the t ensor  oft(t, ~) sat isfying the p rope r ty  (16) can be reduced.  The quantit ies ~ a ,  ~ a  depend on the de-  
fo rmat ion  mode at  a given point at  ins tant  of t ime t. Some theological  models  found in the bibl iography on this 
subjec t  co r r e spond  to the in tegra l  equation 

t f 

~ _ ~  ~ Dz 

which is obtained through in tegra t ion of Eq. (18) by pa r t s .  Functions ~c~ and 9)a a r e  re la ted  through the equa-  

tion ~t~+• Inser t ing  this re la t ion  into Eq. (17")  yields  Pa = - ~ a -  A fea ture  distinguishing model (18) 

f rom model  (19) is that the quantity Pa appear ing  as the shea r  modulus in Eq. (17') can be de te rmined  f rom 
Eq. (17")  and depends on deformat ion  h is tory .  In model  (19), on the other  hand, the quantity Pa depends only 
on the flow c h a r a c t e r i s t i c s  at ins tant  of t ime t. When •  q0 a, ~a  a r e  constants ,  then this d i f ference between 
the two models  (18), (19) vanishes  and they become  fully equivalent. Rheological  equations of the one (18) kind 
a r e  genera l iza t ions  of e a r l i e r  Lodge, Ward, Jenkins models  and rheologieal  equations of the (19) kind a r e  
genera l iza t ions  of e a r l i e r  Oldroyd, Fr iedr ichson,  Wal ters  models  [4-7 ]. In o rde r  for  Eqs. (17') and (17'T) to 
m e r g e  into the single re la t ion  (18), i t  is n e c e s s a r y  that the initial  conditions for  them be st ipulated in the qui- 
escent  s tate,  i .e. ,  at  t ~  co (the p rob l em  of initial conditions for  re laxat ion equations has been t rea ted  more  
thoroughly in [31). The t ensor  lift in Eqs.  (17') and (17")  has been defined ambiguously.  A t r ans fo rma t ion  
B B-~ B~ = g~ - -  b~E-- R~ ( T ~ - -  p~E), p~ -~ /~  = p~ - -  ~ ,  ~ - ~  • = ~ + 2b~, T ~ - ~  T ~  = T~  - -  ~ E  where 

D ~  ~ {r  d RB is an a r b i t r a r y  an t i symmet r i c  tensor ,  does not have the form of Eqs. (17') and 
Dt 

{17").  Since the s t r e s s  t ensor  has been defined p rec i se ly ,  except  for  the i so t ropic  tensor ,  this t r ans fo rma t ion  
will not a l t e r  the rheologica l  equation. In o r d e r  for  the in tegra l  equation (1) to be reducible  to the s y s t e m  
(17 ' ) ,  (17") with a s y m m e t r i c  t ensor  Bfl ,  the t ensor  1~/~ mus t  sa t is fy  the equation lift - l i~ = ( T a f  t -  paE)  l~ft+ 
ttfi(Ta/~ - p a E ) .  In a s y s t e m  of coordinates  formed bythe e igenvectors  of the t ensor  Taft we have 1Rftij = 

(Bftij - Bflij)/(T(~ftj + Taftj - 2pa  ). This  express ion  mus t  be definite for  any deformat ion  mode and, spec i f -  
ical ly,  when Tafti + Taflj  = 2pa.  We will de te rmine  the condition under which the genera l  re laxa t ion- type  
equation 

0 

T + a T +  u = ~E, (20) 

with the s y m m e t r i c  t ensor  Y, dependingon the flow mode at a given point a t  instant  of t i m e t ,  becomes  t r a n s -  
fo rmed  into the s y s t e m  of Eqs.  ( I7 ' )  and (17")  with a s y m m e t r i c  tensor  B. Inser t ing T = T -  pE into Eq. (20) 
yields  

o Dp 
T +  •  - - + •  (21) 

Dt 

System (21) co r r e sponds  to the f o r m  (17 r),  (17")  if  there  is  a t ensor  I3 which sa t i s f i es  the equation Y = liT + 
Tli.  In a s y s t e m  of coordinates  fo rmed  by the e igenvee tors  of the t ensor  T we have Bij = Yij /(Ti  + Tj) .  This 
re la t ion  mus t  be definite for  any deformat ion  mode and, specif ical ly ,  when Ti + Tj = 0. 

There fo re ,  not every  in tegra l  equation (1) and re laxat ion equation (20) is reducible  to the s y s t e m  (17') ,  
(17") with a s y m m e t r i c  t enso r  ~fi .  Let  us examine c lo se r  the meaning of s y m m e t r i c  t enso r s  B~. F r o m  r e p r e -  
sentat ion (I1) and Eq. (14) we have 

D~DI = ~ (W + BI3) i% + ~  W + B~3) ~ = 2~B~o~.~ (22) 

It is  evident he re  that tiff = E and, consequently,  no s t r e s s e s  appear  when Bft = 0. When Bfl = D, where D = 
t/2(V~ + V~ T)  is the s t r a in  r a t e  t ensor  of the medium,  then Aft = 7 ~  and Eq. (14) yields w = Ft(~)  as the 
re la t ive  s t r a in  grad ien t  in the med ium [ 1-3].  These  p rope r t i e s  as well as the t r ans fo rma t ion  law for  tensor  
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w f l  make  it poss ible ,  upon a change of the r e f e r ence  sys tem,  to i n t e rp re t  t ensor  1]/3 as the s t r a in  r a t e  t ensor  
of a B- la t t ice .  The quanti t ies ~<a, qoa, I~B in Eqs.  (17') and (17")  depend on the flow c h a r a c t e r i s t i c s  a t  ins tant  
of t ime t, namely  on t ensors  D and T a f  t ,  in ternal  p a r a m e t e r s  cha rac te r i z ing  the medium,  higher  than f i r s t -  
o rde r  s t ra in  r a t e  t ensors  (R iv l in -  E r icks  en, White-  Metzner ,  Goddard [ 3, 10 ]), etc. Since Eq s. ( 17' ) and ( 17" ) 
sa t is fy  the pr inciple  of object ivi ty,  these functions a r e  i so t ropic  [ 1, 2]. Using the fo rmulas  for  r ep resen t ing  
i so t ropic  s c a l a r  and vec tor  functions of s y m m e t r i c  t ensors  [11, 12], one can wri te  the express ions  fo r  xo~, q~ 
Bfi in a m o r e  explicit  fo rm.  In the s i m p l e s t  case  of these  quanti t ies depending only on the two tensors  D and 
TaB [2, 3], for  instance,  

B~ = m~D q- mzT~ q- m~D ~ q- rn~TT~/~ ~ q- m~ (DT~ -~ T~D) q- m~ (DZTc~f~ .@ T~f~D ~) -]- m~ (DT~f~ q- T~D) q- tn~ (D~T~f~ q- T~t~D ). ~ ~ (23) 

The i so t ropic  t e r m  has been omit ted in express ion  (23). Functions ~a ,  9~a, and also m i (i = 1-8) depend on in-  
ternal  p a r a m e t e r s  and on nine invar ian ts  of t enso r s  D and TaB (inasmuch as t r D  = 0): t r D  2, t r D  ~, t r  TaB, 
t r  T2~, t r  W3fi, t r  ( T a ~ D ) ,  t r  (TafiD2), t r  (DT2B), t r  (D2T2/~). The i so t ropic  t ensor  function B~TaB + To48B B 
in Eq. (17') can also be e x p r e s s e d  in a f o r m  analogous to express ion  (23). Such a t r ans fo rma t ion  is  effected 
through sequential  el imination of t enso r s  T~fl, TafiDT~fl,  To~flD2Tafi with the a i r  of the H a m i l t o n -  Cayley t h eo rem 
and the consequent  identity for  s y m m e t r i c  t ensors  

TAT ~ (TA + AT) tr T - -  TZA - -  AT ~ - -  1 A (tr ~ T i tr T ~) + T ~ tr A + 
2 

+ T (tr TA- -  tr T tr A) + E [tr  T~A-- tr T lr TA § ~ ( t r ~  T - -  tr l~) t rA].  

Fo r  calculating the c h a r a c t e r i s t i c s  of a slow flow one can use  different ial  rheological  equations. Fo r  the 
genera l ized  Maxwell fluid (17') ,  (17")  these equations a r e  obtained by inser t ion  of the s t ra in  t ensor  expansion 

Dn QO 
f ~  = E + V~.  (~ - -  t) ~ V ~  - 

n= 1 n! ' Dz  n 

into in tegral  Eqs. (18) and (19), r e spec t ive ly :  

t 

' ('~--t)'~ e x p ( - - I  z<~d~)d'c, 

- t -  (1:-- t )  '~ exp (--,t '  • d'r. T:2  n ,  
ff,[$ n = l  - - ~  "r 

As t ~ - oo, we find that ~0 a ~ q~0, a ,  ~o~ --* ~0,c~, z a ~  z0,o~ with subsc r ip t  0 denoting the values of these  quan-  

t i t ies  in the undeformed s ta te  and qa,n ~ ( -  l~n'~ /~ n+l qan  ~ ( - 1 )  n§ "~ (~/~n+l When functions ~0o~ , ~ ,  # " t ' O i a / v c O t ~ '  ~ ~"0,  / O,Od" 

~o~ depend on the deformat ion  mode, then the quantit ies qan ,  qo~,n can be conveniently e x p r e s s e d  in the f o r m  

( - -  1) ~< t~l~<~ (t) 

h = 0  

with the functions de te rmined  f r o m  the equations 

D~a~ 
Dt + • = ~ J ~ .  

Using the mul t ip l icat iv i ty  re la t ion  (16), one can r ewr i t e  the express ion  for  tensor  Vfin in the f o r m  (t o is 
an a r b i t r a r y  instant  of t ime) 

V~ (t) = ~ (t, /0) D~ ~ ( t ~  t) o)~ (t, t0). 
Dt~ 

Differentiat ing this express ion  with r e s p e c t  to t, we obtain the r e c u r r e n c e  re la t ion  

DV~ + A~V~ q- V~A~, V~0 E, 
Dt 

analogous to the r e c u r r e n c e  re la t ions  for  R i v l i n -  E r i cksen  and W h i t e -  Metzner  t ensors  [ 3]. Specif ical ly we 
have VB1 = 2Bfi~ When the t ensor  B B depends on the s t r e s s  tensor ,  then the der iva t ive  DVBn/D t mus t  be  ca l -  
culated by el iminat ion of the de r iva t ives  of the s t r e s s  t ensor  with the aid of Eq. (17') .  

The preceding mathemat ica l  analys is  thus r evea l s  that mos t  rheological  equations for  flowing p o l y m e r  
media  can be der ived f rom the equations of a Maxwell fluid, namely  by introduction of the dependence of quan-  
t i t ies ~a,  q~ on the flow c h a r a c t e r i s t i c s  and by use  of m o r e  in t r ica te  " e f f e c t i v e "  s t r a in  r a t e  t enso r s  Bfi in 
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Eqs. (17') and (17").  Into account is also taken here that the tensors Bfi can depend on the flow character is-  
tics. 
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INTERRELATIONSHIP OF RHEOLOGICAL AND 

BIOLOGICAL CHARACTERISTICS IN COMPLEX 

SYSTEMS 

E. G. Tutova, E. V. Ivashkevich, 
and I. V. Zhavnerko 

UDC 532.535 

The interrelationship of rheologieal properties and quantitative indices of fluids of biological 
origin is analyzed. Possible variants of the use of the viscosity for estimating the state of the 
system are presented. 

In studying labile systems, whose properties depend greatly on the parameters of the external medium 
(t, P, q~)or the state of the system itself (t, W), it is necessary to choose a characteristic physical indicator, 
which reflects to a certain extent the state of the substance, as well as the kinetics and dynamics of its varia- 
tion. Typical representatives of such materials are heterogeneous systems of biological origin- microbe bio- 
masses. It is well known that the presently existing methods of microbiological analysis are imperfect and are 
distinguished by their long duration., measured in days, and high degree of error. The effect of the error can 
be eliminated by multiple repetition of the experiment and statistical analysis of the results obtained, as is 
customary in studying probabilistic processes. However, inthis case, the duration of the analysis increases even 
more, which can be eliminated only by developing and applying new improved methods, based on the interrela- 
tionship of physical and biological properties of the system. 

It is well known that microbiological materials of different nature are characterized by a wide range of 
rheological properties from Newtonian to plastic [i], which can serve as qualitative and quantitative indices of 
heat and mass transfer in bioengineering and biotechnology processes. Thus, the viscosity of the starting feed 
media exceeds by not more than a factor of 1.5-2 the viscosity of water, while during the growth of life of micro- 
organisms, this quantity increases by one to two orders of magnitude. The increase in the viscosity of the 
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